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Abstract

The phase field model is considered as a special case of thermodynamics of a binary mixture. The customary |Vc\2-
term in the free energy is thus recognized as a term that represents the kinetic energy of the diffusive motion of the two
phases. This interpretation deviates from the usual one by which the |Ve|*-term represents a “smeared-out” interfacial
energy. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The consideration of phase transitions has a long tradition in mathematics. In the classical Stefan
problem (Hoffmann and Sprekels, 1990), the interfaces between the phases were considered to be sharp, so
that each point is occupied by one phase only. This is undoubtedly the correct view, if we look very closely
into wet vapour, — or fog —, a suspension of liquid droplets in vapour. However, more recently there is also
a coarse view of the fog ! in which we perceive a homogeneous mixture of the two phases with a con-
centration ¢ of vapour (say). The latter view is the one of the phase field theory (Caginalp, 1990; Colli, 1997);
and ¢ — the ratio of the mass of vapour in a volume element to the total mass — may then be considered as
the phase field. This is the interpretation of the phase field embraced in this paper. >

As a rule, the mathematical literature makes no explicit use of the mixture character of the fog. Rather it
derives the field equation for the phase field by variation from a free energy density of the form

dc v Oc Oc
f(c’a_x) _fo(c)—ki@_x,-ﬁ_x,-’ (1.1)

" Fax: +49-30-314-21021.

E-mail address: im@thermodynamik.tu-berlin.de (I. Miiller).

! Mathematicians often speak of a “mushy region” which is the solid-liquid analogue to the liquid—vapour fog.

2 It is difficult to pin the mathematicians down as to the physical nature of the phase field. Most prefer not to commit themselves
and they speak vaguely of an order parameter “in some sense”.
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The gradient term represents a smeared-out interfacial energy of the phase boundaries — again “in some
sense” — while f;(c) is a more conventional free energy with minima at ¢ = 0 and ¢ = 1, the limiting values
of ¢. Thus, a typical phase field equation reads

L0 [ dc\ o

A thermodynamicist who looks at Eq. (1.2) would have an immediate conditioned reflex which would
say: diffusion equation. He would interpret

dc
J = _Va_xi (1.3)

as the diffusion flux of the two phases — an interpretation that has nothing at all to do with interfacial
energies. For the thermodynamicist, therefore, the gradient term in f, Eq. (1.1), would be a term propor-
tional to J?, which is the kinetic energy of the diffusive motion.

I have never been able to understand “smeared-out’ interfacial energies, and therefore, I am happy to
accept the thermodynamicist’s interpretation of the gradient term in f as a kinetic energy.

This paper presents a thermodynamic theory of a multicomponent mixture of fluids as is discussed in the
field of thermodynamics of irreversible processes. The first objective is to show how the kinetic energy of
the diffusive motion enters the free energy. The second objective is to reconcile the kinetic energy term in the
free energy with the more common gradient term.

As a historical quirk, I also mention this: A theory with phase field gradients — or order parameter
gradients — is sometimes called a Landau and Ginzburg (1950) theory. This harks back to a semi-quantum-
mechanical paper of these authors in 1950 on superconductivity. They wanted a Oc/Ox;-term in the free
energy, and for isotropy, they were sure that the term had to be of the form |grad c|2. What they were not
sure of was the coefficient. So, they argue as follows:

.. (the term) looks like the density of kinetic energy in quantum mechanics. Thus(!!), we shall write the
corresponding expression in the form

i 21 2
%\grad c| :ﬂ|_ih grad c|™.

The idea was, of course, that (7/i) (0/0x;) is the operator which in quantum mechanics corresponds to the
momentum p; and the kinetic energy is p*>/(2m). Therefore we conclude that even for Landau and Ginzburg
(1950) the gradient term in the free energy was related to the kinetic energy. In that sense, those authors
have anticipated the gist of the present paper: albeit by a quantum mechanical ruse.

2. Equations of balance for constituents o

We consider the phase field theory (Caginalp, 1991; Colli, 1997) as a binary mixture theory of two
phases. To fix the ideas, we think of “wet vapour” as finely dispersed droplets in their vapour. The
equations are based on the following equations of balance:
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T4, My, €, and g, are the production densities of mass, momentum, energy and entropy, respectively, of
phase a. All other quantities are denoted by the canonical letters, used in the bulk of the relevant literature,
e.g., see Eckart (1940) or Miiller (1984). Note that the non-convective partial entropy flux is assumed to be
given by ¢?/T.

3. Equations of balance of mixture

Conservation of mass, momentum, energy and growth of entropy requires

v

ifazo, > m =0, zv:eazo, iaxZO
o=1 =1 =1

o=1
(For generality, we assume v-constituents — or phases — rather than 2.)
Define p = )", p, and pv; = > _p,v¥; hence,

mass balance o + Opui
ot  Ox;

Define 7; = ), (tf; — P uj) and u? = v! — v; (diff. velocity); hence,

=0.

dpu;  d(pvjvi —ty) _
o T e

Define ¢ = 37, % (e, +3u;) and ¢; = 3=, (qf.‘ + p, (& + 12 )u? — 2 x). hence,

momentum balance

UJ

Ope | O(pev; + g ov;
energy balance % + w = tij%,
! J

Define s =, %sa, w, =&, — Ts, + ﬁ—z; hence,
aps 6{psv,— + [qt - Z;:I nuocpocuza - Z;:l paéui] + Za (t%zj) - T[%(Sij)u?}
4 > 0.
Gxi
1 has been introduced as the deviatoric part of the partial stress tensor #;. We have
= 1y~ (a5 w03,

where p, is the equilibrium pressure and =, is the dynamic pressure, the non-equilibrium part of the
pressure. u, is the chemical potential of constituent o.

energy balance

4. Fields and field equations

Objective: determine p,,v?, T. Thus, there are 4v 4 1 fields to be determined for which we need 4v + 1
field equations. For these, we choose the equations of balance of
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; Opy y Oputf
partial masses L* + =t = 1,,
. Op,v* Op, Vv =17 o
partial momenta — - +—4—"=m’,
AL p
. d(pevitqi i
(internal) energy 2+ (”%‘f"‘) = tfj%j.
t;a m};‘(s &, qi-

This set of equations is not closed because there are a number of constitutive quantities, viz. t,,

5. Alternative fields and field equations

The alternative set of fields are
P, U5, T <= p,cy, 0, J7, T.
¢y = p,/p is called the concentration of constituent «, — here the phase o — and J* = p,u? is its diffusion
flux. We introduce the material derivative 0/0¢ + v,0/0x;, indicated by a superposed dot, and write the

equations of balance in the form,

n 61),«
P pax,7
. + a ix
CM - Toca
p Ox;
at,j
i Oa
pY axj
. dv;, Ou, ot — pyutu?)
JI+J? S0 b — — I = T = Ty,
; + f(ax,Jraxe ])+pav o, m; — T,
. aq; avl
pe+ ox, ij&j-

The constitutive may now be written as

o [ J— o o
Ty by M =m! -, ¢ q.

M; is called the interaction force on constituent o due to the other constituents. The constitutive equations
may be derived from the balance of entropy in the manner of thermodynamics of irreversible processes: by

relating thermodynamic forces and fluxes.

6. Local equilibrium assumption: Gibbs equations
Su(Py T), €4(84, T), py(sy, T) are given by the “equations of state” of each constituent so that the Gibbs

equations hold:

. 1/, p..
Sey = = | & — 5Py |-
T o2’

The Gibbs equation for the mixture results by multiplication with p, and summation over all a:
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< Ev pasd> :% ( EV p181> - Ev U,Py (cf. Section 3),
a=1 a=1 oa=1
N —

)
ps pe=y  Aput

o=1 a=1

pit (p . [zpu - zpauzlp S () Zur:ff)-
o a=1

7. Entropy balance

1109

On the right-hand side of the Gibbs equation, we use the equations of balance of Section 5 to replace pé,
p, pc, and J7*. After this is done, we may decompose the right-hand side into a divergence term — the
divergence of the entropy flux — and a residue that determines the non-negative entropy production. A

lengthy calculation leads to the following entropy balance equation:

. a 1 . o o o
ps + . { T (‘Ii - Z(Mx + %“i)*], + Z(tm - n“(sif)”j> }

a=1

1 ¢ 12 BN ovf Ha%

<
—

' o=k 1 /1 op, 1 Op, 1 < ov*
FuMP —— T~ — 22— ) gy — N
B ax,' + T ( ) + ; Xj

In writing this, we have defined for abbreviation

v 1 1
a'=> <617 + P, (6 +%)uf) and F = p—5a/f s

o=1 o v

Also, we have indicated by the brace a new quantity, viz. D?, which serves as a convenient abbreviation for

the expression in angular brackets.

Among the densities 7, of mass production, only n are independent, where » is the number of inde-

pendent chemical reactions or phase changes. We write

n

T, = Z PEM, g A°.

a=1

a=1,2,...,nis an index for the independent reactions or phase changes. y¢ are the corresponding stoi-
chiometric coefficients, M,, the relative molecular masses and , is the atomic mass unit. A denotes the rate

of reaction a.
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8. Phenomenological equations

The right-hand side of the entropy balance is the non-negative entropy production. An inspection shows
that it is a sum of products of thermodynamic forces and thermodynamic fluxes.

Thermodynamic forces Thermodynamic fluxes
na
P S VMapto (1, — 3u23)
v}
Ty B
11 3t
q; ox;
4 o
D: J
t(x avil
{if) B>

We relate these linearly and obtain

I
ZLab<Zy o (11, — a2 >+2Lﬁ?j€,

p
v —ZL“ (Zx Moo (1, —%)) +ZL‘“/52%
ﬁ 1

al v—1
m_ YT B 1B
qi' = Orar+ ;Qﬂi :

D” I + ZD’ﬁJ’f,

ov”,
o af <i
i ; 8 Ox;

The coefficient matrices

or 0O
Di DY

2

Lab L4
‘ Y o

L Lt

must be positive or negative definite as dictated by the entropy inequality.

The framed equations are called phenomenological equations in thermodynamics of irreversible pro-
cesses, because the original — much simpler — form of these equations was deduced from observed phe-
nomena by scientists such as Fourier, Fick, Navier and Stokes.
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9. Fick’s law

Fick’s law proper is a mutilated form of the balance of relative momentum — the equation starting with
J?. We have

. on on, o(1 — partur)
Jr+J* L5, p——— 7 = M
P (ij+6xe j) Pl x; i

J

or with o; = (1/p) (0t;;/0x;)

. ov; v = 1 at p,juﬁuﬁ» 1 ot — pulu’
Jra g iy Tes iYL L R Y
o (6}6 ) Z < Ox; Ox; !

J J Py J

FJ,I is the inverse matrix of F,g, defined in Section 7, and we may write F,3 = p,0,5 — pxpﬂ/ p. The inter-
action force M may be replaced by D? according to the definition of D? in Section 7; D! may be replaced by
its constitutive equation. Thus, M} can be expressed as

=iy

0— 1 op 19 0L .
A B Py Y7 By 17

E T /A T§ +3 D)

( pp Ox; 6x,> ( ox; — S

and consequently, the balance of relative momentum reads

y—1 B Lub S
J'.°‘+J&<a”i a”e ) Z lat — pyuii ;) ia([’f p“”’”-’)

Ox; Py Ox;
) oM gp, 10

B N vl (S L A D/f Dh
Z * ( Ox; +pﬁ ox;  p, Ox; Z +Z

This is the full balance of relative momentum of constituent o. If 17, are replaced by their phenomeno-
logical equations, it is quite explicit except that the phenomenologlcal coefﬁments wh, Dﬁ and D must be
given.

But it is not a simple equation. Usually, it is simplified by a kind of Maxwell iteration whose first step
requires that all quantities on the left-hand side are replaced by their equilibrium values J?, and u! are zero
in equilibrium and #; = —p,8”. Thus, the first iteration for the right-hand side is given by

v—1 ) v—1 Hp—Hy ) 1 v—1
1 opf 1 op o—~= 10 10p o)
Fll—=——-— =y FMr—r = — -T Dﬂ— Dﬁ’J

Z " (Pﬁ a;  p, Ox; Z “ﬂ ox; +P/f o, p, Ox; Z * Z

p=1

1)
or by solving for the first iterate J7,

v—1 -1 a Hﬁ Hy v—1 -1
si=3 o () - ool

The two expressions with the partial pressures cancel each other.
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This is Fick’s law as derived by thermodynamics of irreversible processes. It is clearly a strongly mu-
tilated form of the balance of relative momenta of the constituents.

10. Special case

Simplifying assumptions

(1) J-independent of 07 /0x;,

(i) p = const v, =0,

(ill) 77, 7y, ax — all negligible,

(iv) two phases only, i.e. v=2.

In this case, the final form of Fick’s law, derived in Section 9, reduces to a single equation for J! = J,, viz.

pe Oc O — 1y
= — —, h =——.
D;T 0x; WhHeTe fte Oc
Hence,
Jc . g
J; = —Da— D > 0 is the diffusion constant.
X;
Also, the free energy density reads
pf = pe —T5)
or, by Section 3
2 1

pf = Zp —Ts,) +ZP7‘” = prx - Ts,) +%m J?

By Section 6, the first term is independent of velocities, and we may denote it by pfy(c, T'). The second term
represents the kinetic energy of the diffusive motion.

Combining the expressions for the free energy and Fick’s law, we obtain
D? dc Oc

i == T _—_— e—_—

pf = pfole,T) + 21— <) 3

so that we may now interpret the kinetic energy of the diffusive motion as a gradient term, or vice versa.
Infact, this is the main assertion of this paper:

The gradient term, usually attributed to a “smeared-out” interfacial energy is nothing else than the kinetic
energy of the diffusive motion.

The partial mass balance — the equation for ¢, in Section 5 — reads in the present context and with
Fick’s law and

0 dc
pc ~ <D©_x,> T

The mass production 7 is given by My, 4, according to Section 7, since our “chemical reaction” is merely a
phase change in which the molecular mass does not change and where the stoichiometric coefficients are +1
and —1. And the reaction rate is given by the phenomenological equation A = LMy, (u; — i), if we ignore
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the non-linear kinetic energy term. On the other hand, we know from the Gibbs equation that we have to
within non-linear terms

H— _afo

T ac’
Therefore, the partial mass balance reads

0 dc ofo
—— (D= ) =LM* 12 T ==.
pe ( Gx,-) Ho b e

Rearranging and renaming coefficients, we conclude that the partial mass balance has quite the same form
as the phase field equations described in Section 1.

With all this, we conclude that the special case of a theory of a phase mixture, which is considered here,
does give rise to a phase field equation of the form sketched in Section 1.
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