
Thermodynamics of mixtures and phase ®eld theory

Ingo M�uller *

Technische Univ. Berlin Sekr. HF 2, Fachbereich 6, Thermodynamik, Strasse des 17, Juni 135, D-10623 Berlin, Germany

Received 12 May 1999

Abstract

The phase ®eld model is considered as a special case of thermodynamics of a binary mixture. The customary rcj j2-

term in the free energy is thus recognized as a term that represents the kinetic energy of the di�usive motion of the two

phases. This interpretation deviates from the usual one by which the rcj j2-term represents a ``smeared-out'' interfacial

energy. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The consideration of phase transitions has a long tradition in mathematics. In the classical Stefan
problem (Ho�mann and Sprekels, 1990), the interfaces between the phases were considered to be sharp, so
that each point is occupied by one phase only. This is undoubtedly the correct view, if we look very closely
into wet vapour, ÿ or fog ÿ, a suspension of liquid droplets in vapour. However, more recently there is also
a coarse view of the fog 1 in which we perceive a homogeneous mixture of the two phases with a con-
centration c of vapour (say). The latter view is the one of the phase ®eld theory (Caginalp, 1990; Colli, 1997);
and c ± the ratio of the mass of vapour in a volume element to the total mass ÿ may then be considered as
the phase ®eld. This is the interpretation of the phase ®eld embraced in this paper. 2

As a rule, the mathematical literature makes no explicit use of the mixture character of the fog. Rather it
derives the ®eld equation for the phase ®eld by variation from a free energy density of the form

f c;
oc
oxi

� �
� f0�c� � m

2

oc
oxi

oc
oxi

: �1:1�
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The gradient term represents a smeared-out interfacial energy of the phase boundaries ÿ again ``in some
sense'' ÿ while f0�c� is a more conventional free energy with minima at c � 0 and c � 1, the limiting values
of c. Thus, a typical phase ®eld equation reads

s _cÿ o
oxi

m
oc
oxi

� �
� of0

oc
: �1:2�

A thermodynamicist who looks at Eq. (1.2) would have an immediate conditioned re¯ex which would
say: di�usion equation. He would interpret

Ji � ÿm
oc
oxi

�1:3�

as the di�usion ¯ux of the two phases ÿ an interpretation that has nothing at all to do with interfacial
energies. For the thermodynamicist, therefore, the gradient term in f, Eq. (1.1), would be a term propor-
tional to J 2, which is the kinetic energy of the di�usive motion.

I have never been able to understand ``smeared-out'' interfacial energies, and therefore, I am happy to
accept the thermodynamicist's interpretation of the gradient term in f as a kinetic energy.

This paper presents a thermodynamic theory of a multicomponent mixture of ¯uids as is discussed in the
®eld of thermodynamics of irreversible processes. The ®rst objective is to show how the kinetic energy of
the di�usive motion enters the free energy. The second objective is to reconcile the kinetic energy term in the
free energy with the more common gradient term.

As a historical quirk, I also mention this: A theory with phase ®eld gradients ÿ or order parameter
gradients ÿ is sometimes called a Landau and Ginzburg (1950) theory. This harks back to a semi-quantum-
mechanical paper of these authors in 1950 on superconductivity. They wanted a oc=oxi-term in the free
energy, and for isotropy, they were sure that the term had to be of the form grad cj j2. What they were not
sure of was the coe�cient. So, they argue as follows:

``.. (the term) looks like the density of kinetic energy in quantum mechanics. Thus(!!), we shall write the
corresponding expression in the form

�h2

2m
grad cj j2 � 1

2m
j ÿ i�h grad cj2":

The idea was, of course, that ��h=i� �o=oxi� is the operator which in quantum mechanics corresponds to the
momentum pi and the kinetic energy is p2=�2m�. Therefore we conclude that even for Landau and Ginzburg
(1950) the gradient term in the free energy was related to the kinetic energy. In that sense, those authors
have anticipated the gist of the present paper: albeit by a quantum mechanical ruse.

2. Equations of balance for constituents a

We consider the phase ®eld theory (Caginalp, 1991; Colli, 1997) as a binary mixture theory of two
phases. To ®x the ideas, we think of ``wet vapour'' as ®nely dispersed droplets in their vapour. The
equations are based on the following equations of balance:
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masses oqa
ot �

oqava
i

oxi
� sa;

momenta
oqava

j

ot �
o qava

j va
i ÿtaij� �

oxi
� ma

i ;

energies
oqa ea�1

2
v2
a� �

ot � o
oxi

qa ea � 1
2
v2

a

ÿ �
va

i � qa
i ÿ taijv

a
j

� �
� ea;

entropies oqasa

ot �
o qasava

i �
qa

i
T

ÿ �
oxi

� ra:

sa, ma, ea and ra are the production densities of mass, momentum, energy and entropy, respectively, of
phase a. All other quantities are denoted by the canonical letters, used in the bulk of the relevant literature,
e.g., see Eckart (1940) or M�uller (1984). Note that the non-convective partial entropy ¯ux is assumed to be
given by qa

i =T .

3. Equations of balance of mixture

Conservation of mass, momentum, energy and growth of entropy requiresXm

a�1

sa � 0;
Xm

a�1

ma
i � 0;

Xm

a�1

ea � 0;
Xm

a�1

ra P 0:

(For generality, we assume m-constituents ± or phases ± rather than 2.)

De®ne q �Pa qa and qvi �
P

aqava
i ; hence,

mass balance
oq
ot
� oqvi

oxi
� 0:

De®ne tij �
P

a taij ÿ qaua
i ua

j

� �
and ua

i � va
i ÿ vi �diff : velocity�; hence,

momentum balance
oqvj

ot
� o qvjvi ÿ tij

ÿ �
oxi

� 0:

De®ne e �Pa
qa
q ea � 1

2
u2

a

ÿ �
and qi �

P
a qa

i � qa ea � 1
2
u2

a

ÿ �
ua

i ÿ taiju
a
j

� �
; hence,

energy balance
oqe
ot
� o qevi � qi� �

oxi
� tij

ovi

oxj
:

De®ne s �Pa
qa
q sa; la � ea ÿ Tsa � pa

qa
; hence,

energy balance
oqs
ot
�

o qsvi � qi ÿ
Pm

a�1 laqaua
i ÿ

Pm
a�1 qa

1
2
u2

a

� ��Pa tahiji ÿ padij

� �
ua

i

n o
oxi

P 0:

tahiji has been introduced as the deviatoric part of the partial stress tensor taij. We have

taij � tahiji ÿ pa� � pa�dij;

where pa is the equilibrium pressure and pa is the dynamic pressure, the non-equilibrium part of the
pressure. la is the chemical potential of constituent a.

4. Fields and ®eld equations

Objective: determine qa; v
a
i ; T . Thus, there are 4m� 1 ®elds to be determined for which we need 4m� 1

®eld equations. For these, we choose the equations of balance of
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partial masses oqa
ot �

oqava
i

oxi
� sa;

partial momenta
oqava

j

ot �
oqava

j va
i ÿtaij

oxi
� ma

j ;

�internal� energy oqe
ot � o qevi�qi� �

oxi
� tij

ovi
oxj
:

This set of equations is not closed because there are a number of constitutive quantities, viz. sa, taij, ma
j , e, qi:

5. Alternative ®elds and ®eld equations

The alternative set of ®elds are

qa; v
a
i ; T () q; ca; vi; J a

i ; T :

ca � qa=q is called the concentration of constituent a;ÿ here the phase a ÿ and J a
i � qaua

i is its di�usion
¯ux. We introduce the material derivative o=ot � vio=oxi, indicated by a superposed dot, and write the
equations of balance in the form,

_q� q
ovi

oxi
;

q _ca � oJ a
i

oxi
� sa;

q _vi ÿ otij

oxj
� 0;

_J a
i � J a

j

ovi

oxj

�
� ove

oxe
dij

�
� qa _vi ÿ

o�taij ÿ qaua
i ua

j �
oxj

� ma
i ÿ savi;

q _e� oqi

oxi
� tij

ovi

oxj
:

The constitutive may now be written as

sa; taij; Ma
i � ma

i ÿ sava
i ; e; qi:

Mi is called the interaction force on constituent a due to the other constituents. The constitutive equations
may be derived from the balance of entropy in the manner of thermodynamics of irreversible processes: by
relating thermodynamic forces and ¯uxes.

6. Local equilibrium assumption: Gibbs equations

sa qa; T� �, ea sa; T� �, pa sa; T� � are given by the ``equations of state'' of each constituent so that the Gibbs
equations hold:

_sa � 1

T
_ea

�
ÿ pa

q2
a

_qa

�
:

The Gibbs equation for the mixture results by multiplication with qa and summation over all a:
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Xm

a�1

qasa

 !�
|���������{z���������}

qs

� 1

T

Xm

a�1

qaea

 !�
|���������{z���������}
qeÿ
Pm

a�1
1
2
qau2

a

0BBBBB@ ÿ
Xm

a�1

la _qa

1CCCCCA �cf : Section 3�;

q_s � 1

T
q _e

 
ÿ 1

q

Xm

a�1

pa

"
ÿ
X

a

qau2
a

#
_qÿ

Xm

a�1

la

ÿ ÿ 1
2
u2

a

�
q _ca ÿ

Xm

a�1

ua
i
_J a
i

!
:

7. Entropy balance

On the right-hand side of the Gibbs equation, we use the equations of balance of Section 5 to replace q _e,
_q, q _ca and _J a

i . After this is done, we may decompose the right-hand side into a divergence term ÿ the
divergence of the entropy ¯ux ÿ and a residue that determines the non-negative entropy production. A
lengthy calculation leads to the following entropy balance equation:

q_s� o
oxi

1

T
qi

 (
ÿ
Xm

a�1

�la � 1
2
u2

a�J a
i �

X
a

�tahiji ÿ padij�ua
j

!)

� ÿ 1

T

Xm

a�1

�la ÿ 1
2
u2

a�sa ÿ 1

T

Xm

a�1

pa
ova

i

oxi
� qII

i

o 1
T

oxi

�
Xm

a�1

ÿ 1

T

Xm

b�1

FabMb
i ÿ

o laÿlm
T

oxi
� 1

T
1

qa

opa

oxi
ÿ 1

qm

opm

oxi

� �
|��������������������������������������������{z��������������������������������������������}

264
375

Da
i

J a
i �

1

T

Xm

a�1

tahiji
ova

i

oxj

P 0:

In writing this, we have de®ned for abbreviation

qII
i �

Xm

a�1

qa
i

�
� qa ea

�
� qa

qa

�
ua

i

�
and Fab � 1

qa

dab � 1

qm

:

Also, we have indicated by the brace a new quantity, viz. Da
i , which serves as a convenient abbreviation for

the expression in angular brackets.
Among the densities sa of mass production, only n are independent, where n is the number of inde-

pendent chemical reactions or phase changes. We write

sa �
Xn

a�1

ca
i Mal0k

a:

a � 1; 2; . . . ; n is an index for the independent reactions or phase changes. ca
a are the corresponding stoi-

chiometric coe�cients, Ma, the relative molecular masses and l0 is the atomic mass unit. ka denotes the rate
of reaction a.
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8. Phenomenological equations

The right-hand side of the entropy balance is the non-negative entropy production. An inspection shows
that it is a sum of products of thermodynamic forces and thermodynamic ¯uxes.

We relate these linearly and obtain

ka �
Xn

b�1

Lab
X

a

cb
aMal0 la

ÿ 
ÿ 1

2
u2

a

�!�X
b

La
b

ovb
i

oxi
;

pa �
Xn

b�1

La
b

X
a

cb
aMal0 la

ÿ 
ÿ 1

2
u2

a

�! �X
b

Lab ovb
i

oxi
;

qII
i � QT

o 1
T

oxi
�
Xmÿ1

b�1

Qb
T Jb

i ;

Da
i � Da

T

o 1
T

oxi
�
X

b

Dab
J Jb

i ;

tahiji �
X

b

lab ova
<i

oxj>
:

The coe�cient matrices

Lab La
b

La
b Lab

���� ����; QT Qb
J

Da
T Dab

J

���� ����; lab

must be positive or negative de®nite as dictated by the entropy inequality.
The framed equations are called phenomenological equations in thermodynamics of irreversible pro-

cesses, because the original ÿ much simpler ÿ form of these equations was deduced from observed phe-
nomena by scientists such as Fourier, Fick, Navier and Stokes.

Thermodynamic forces Thermodynamic ¯uxes

ka P
ac

a
aMal0 la ÿ 1

2
u2

a

ÿ �
pa

ova
i

oxi

qII
i

o 1
T

oxi

Da
i J a

i

tahiji
ova
<i

oxj>
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9. Fick's law

Fick's law proper is a mutilated form of the balance of relative momentum ÿ the equation starting with
_J a
i . We have

_J a
i � J a

i

ovi

oxj

�
� ove

oxe
dij

�
� qa _vi ÿ

o taij ÿ qaua
i ua

j

� �
oxj

� Ma
i

or with _vi � �1=q� �otij=oxj�

_J a
i � J a

j

ovi

oxj

�
� ove

oxe
dij

�
ÿ
Xmÿ1

b�1

F ÿ1
ab

1

qb

otbij ÿ qbub
i ub

j

oxj

 
ÿ 1

qm

otmij ÿ qmu
m
i u

m
j

oxj

!
� Ma

i :

F ÿ1
ab is the inverse matrix of Fab, de®ned in Section 7, and we may write Fab � qadab ÿ qaqb=q: The inter-

action force Ma
i may be replaced by Da

i according to the de®nition of Da
i in Section 7; Da

i may be replaced by
its constitutive equation. Thus, Ma

i can be expressed as

Ma
i �

Xmÿ1

b�1

F ÿ1
ab T

oÿ lbÿlm

T

oxi

�
� 1

qb

opb

oxi
ÿ 1

qm

opm

oxi

�
ÿ T

Xmÿ1

b�1

F ÿ1
ab Db

T

o 1
T

oxi

 
�
Xmÿ1

c�1

Dbc
J J c

i

!
;

and consequently, the balance of relative momentum reads

_J a
i � J a

j

ovi

oxj

�
� ove

oxe
dij

�
ÿ
Xmÿ1

b�1

F ÿ1
ab

1

qb

o tbij ÿ qbub
i ub

j

ÿ �
oxj

0@ ÿ 1

qm

o tmij ÿ qbum
i u

m
j

� �
oxj

1A
�
Xmÿ1

b�1

F ÿ1
ab T

oÿ lbÿlm

T

oxi

�
� 1

qb

opb

oxi
ÿ 1

qm

opm

oxi

�
ÿ T

Xmÿ1

b�1

F ÿ1
ab Db

T

o 1
T

oxi

 
�
Xmÿ1

c�1

Dbc
J J c

i

!
:

This is the full balance of relative momentum of constituent a. If tahiji are replaced by their phenomeno-
logical equations, it is quite explicit except that the phenomenological coe�cients lab, Db

T and Dab
J must be

given.
But it is not a simple equation. Usually, it is simpli®ed by a kind of Maxwell iteration whose ®rst step

requires that all quantities on the left-hand side are replaced by their equilibrium values J a
i , and ua

i are zero
in equilibrium and taij � ÿpad

ij. Thus, the ®rst iteration for the right-hand side is given by

Xmÿ1

b�1

F ÿ1
ab

1

qb

opb

oxi

�
ÿ 1

qm

opm

oxi

�
�
Xmÿ1

b�1

F ÿ1
ab T

oÿ lbÿlm

T

oxi

�
� 1

qb

opb

oxi
ÿ 1

qm

opm

oxi

�
ÿ T

Xmÿ1

b�1

F ÿ1
ab Db

T

o 1
T

oxi

 
�
Xmÿ1

c�1

Dbc
J J c

i

�1�
!

or by solving for the ®rst iterate J a
i

�1�
,

J a
i

�1�
�
Xmÿ1

b�1

Dab
J

ÿ1 oÿ lbÿlm

T

oxi

� �
ÿ
Xmÿ1

b�1

Dab
J

ÿ1

Db
T

o 1
T

oxi
:

The two expressions with the partial pressures cancel each other.
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This is Fick's law as derived by thermodynamics of irreversible processes. It is clearly a strongly mu-
tilated form of the balance of relative momenta of the constituents.

10. Special case

Simplifying assumptions
(i) J a

i -independent of oT=oxi,
(ii) q � const, vi � 0,

(iii) tahiji, pa,
ova

i
oxj
ÿ all negligible,

(iv) two phases only, i.e. m � 2.
In this case, the ®nal form of Fick's law, derived in Section 9, reduces to a single equation for J 1

i � Ji, viz.

Ji � ÿ lc

DJ T
oc
oxi

; where lc �
ol1 ÿ l2

oc
:

Hence,

Ji � ÿD
oc
oxi

; D > 0 is the diffusion constant:

Also, the free energy density reads

qf � q e� ÿ Ts�
or, by Section 3

qf �
X2

a�1

qa ea� ÿ Tsa � �
X2

a�1

qa
1
2
u2

a �
X2

a�1

qa ea� ÿ Tsa � � 1
2

1

qc�1ÿ c� J 2:

By Section 6, the ®rst term is independent of velocities, and we may denote it by qf0 c; T� �. The second term
represents the kinetic energy of the di�usive motion.

Combining the expressions for the free energy and Fick's law, we obtain

qf � qf0 c; T� � � D2

2qc�1ÿ c�
oc
oxi

oc
oxi

;

so that we may now interpret the kinetic energy of the di�usive motion as a gradient term, or vice versa.
Infact, this is the main assertion of this paper:

The gradient term, usually attributed to a ``smeared-out'' interfacial energy is nothing else than the kinetic
energy of the di�usive motion.

The partial mass balance ÿ the equation for _ca in Section 5 ÿ reads in the present context and with
Fick's law and

q _cÿ o
oxi

D
oc
oxi

� �
� s:

The mass production s is given by Ml0k, according to Section 7, since our ``chemical reaction'' is merely a
phase change in which the molecular mass does not change and where the stoichiometric coe�cients are �1
and ÿ1. And the reaction rate is given by the phenomenological equation k � LMl0 l1 ÿ l2� �, if we ignore
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the non-linear kinetic energy term. On the other hand, we know from the Gibbs equation that we have to
within non-linear terms

l1 ÿ l2

T
� of0

oc
:

Therefore, the partial mass balance reads

q _cÿ o
oxi

D
oc
oxi

� �
� LM2 l2

0 T
of0

oc
:

Rearranging and renaming coe�cients, we conclude that the partial mass balance has quite the same form
as the phase ®eld equations described in Section 1.

With all this, we conclude that the special case of a theory of a phase mixture, which is considered here,
does give rise to a phase ®eld equation of the form sketched in Section 1.
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